## Practice Worksheet: Inverse Functions and One-to-One

Determine if each pair of functions are inverses by NEATLY sketching the graphs of $f(x)$ and $g(x)$ on the same plane.

| 1] $\left\{\begin{array}{l}f(x)=4-\frac{3}{2} x \\ g(x)=\frac{1}{2} x+\frac{3}{2}\end{array}\right.$ | $\text { 2] }\left\{\begin{array}{c} f(x)=2\|x+2\| \\ g(x)=\frac{1}{2} x-2 \end{array}\right.$  | 3] $\left\{\begin{array}{c}f(x)=-\frac{1}{27}(x+2)^{3} \\ g(x)=-3 \sqrt[3]{x}-2\end{array}\right.$ |
| :---: | :---: | :---: |
| Inverses - yes or no (circle one) | Inverses - yes or no (circle one) | Inverses - yes or no (circle one) |
| Explain: | Explain: | Explain: |

Find the inverse of each function algebraically. Show all work. Give a restricted domain if needed.

| 4] $f(x)=\frac{3}{4} x-6$ | 5] $f(x)=-\sqrt{3 x}+6$ | $6] f(x)=\frac{(x+4)^{3}}{3}$ |
| :--- | :--- | :--- |
|  |  |  |

Neatly sketch the graph of the inverse function. Label the coordinates of the three anchor points on the inverse.




Determine if $Y_{1}$ and $Y_{2}$ are inverses of each other by analyzing the table of ordered pairs.

| 10] | $X$ | Y/ | Yz | 11] | $X$ | Y 1 | $\mathrm{Y}_{2}$ | 12] | X | $\mathrm{Y}_{1}$ | Yz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -10 121 12 1 $5-5.9$ | 121 <br> 121 <br> 1451 <br> -11 <br> -509 <br> 709 | $11 / 12$ -10 1012 0.103 5 |  | -5 -6 0.6 4 5 5 | 尔 | $-9,2$ -5 -2 0 $1+2$ 1 |  | -10 -0009 $0^{-1}$ 7 1656 | -1, |  |
|  | 8= |  |  |  | र= |  |  |  | X= |  |  |
| Inverses - yes or no (circle one) |  |  |  | Inverses - yes or no (circle one) |  |  |  | Inverses - yes or no (circle one) |  |  |  |
| Explain: |  |  |  | Explain: |  |  |  | Explain: |  |  |  |

Use the horizontal line test to determine if the function is one-to-one. Make a quick sketch and state "YES" or "NO."

| 13] $f(x)=x^{4}-2 x^{2}-1$ | $14] f(x)=\frac{1}{6}(x-2)^{3}+1$ | $15] f(x)=\sqrt{36-x^{2}}$ | $16] f(x)=-\frac{x^{3}}{\sqrt{3}}+3$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

$f(x)$ is solid and $g(x)$ is dashed in each graph. State the type of symmetry $f(x)$ has with $g(x)$ and state if they are inverses.

| $17]$ | 18] | 19] |
| :---: | :---: | :---: |
| - ${ }_{6}^{1} \uparrow$ | $\square \quad i_{i 6}^{7-1}$ |  |
| 》 ${ }_{4}^{5}$ |  | $\mid \quad-4 \mathfrak{5}^{-1}$ |
| $\square \quad{ }_{2}^{3}$ | ${ }_{3}^{13}$ |  |
| $\cdots \xrightarrow{\square}$ |  |  |
|  |  |  |
| $\cdots$ |  |  |
| - -1. | - $\int_{-5}^{-4}$ | - ا - - |
| $\cdots$, |  | $7!{ }_{7}^{-6}{ }_{7}{ }^{7}$ |
| Symmetry: | Symmetry: | Symmetry: |
| Inverses - yes or no (circle one) | Inverses - yes or no (circle one) | Inverses - yes or no (circle one) |

BONUS 20] $\mathrm{f}(\mathrm{x})$ is shown.
Write the equation of its inverse and give the restricted domain.


BONUS 21] Find the equation of the inverse of the function algebraically and give the restricted domain.
Show all work! $f(x)=\frac{5 x+2}{x-5}$

What is awesome about the inverse?

